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Abstract

Two dimensional polyacrylamide gel electrophoresis (2D PAGE) is used to identify differentially expressed proteins and may
be applied to biomarker discovery. A limitation of this approach is the inability to detect a protein when its concentration
falls below the limit of detection. Consequently, differential expression of proteins may be missed when the level of a
protein in the cases or controls is below the limit of detection for 2D PAGE. Standard statistical techniques have difficulty
dealing with undetected proteins. To address this issue, we propose a mixture model that takes into account both detected
and non-detected proteins. Non-detected proteins are classified either as (a) proteins that are not expressed in at least one
replicate, or (b) proteins that are expressed but are below the limit of detection. We obtain maximum likelihood estimates of
the parameters of the mixture model, including the group-specific probability of expression and mean expression
intensities. Differentially expressed proteins can be detected by using a Likelihood Ratio Test (LRT). Our simulation results,
using data generated from biological experiments, show that the likelihood model has higher statistical power than
standard statistical approaches to detect differentially expressed proteins. An R package, Slider (Statistical Likelihood model
for Identifying Differential Expression in R), is freely available at http://www.cebl.auckland.ac.nz/slider.php.

Citation: Wu SH, Black MA, North RA, Atkinson KR, Rodrigo AG (2009) A Statistical Model to Identify Differentially Expressed Proteins in 2D PAGE Gels. PLoS
Comput Biol 5(9): e1000509. doi:10.1371/journal.pcbi.1000509

Editor: Jamie Sherman, Macquarie University, Australia

Received March 5, 2009; Accepted August 19, 2009; Published September 18, 2009

Copyright: � 2009 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was funded by NERF grant UOAX0407, Foundation Science Research and Technology, New Zealand, and SHW was supported by a Doctoral
Scholarship from the University of Auckland, New Zealand. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: a.rodrigo@auckland.ac.nz

Introduction

Two-dimensional polyacrylamide gel electrophoresis (2D

PAGE) [1] separates thousands of proteins within a sample by

their isoelectric points (pI) in the first dimension and their

molecular weights in the second dimension. Gels are scanned and

spot detection performed using commercial or in-house software

packages. These programs convert gel images into vectors of

matched spot volumes and most analyses are subsequently

performed on these data [2]. 2D PAGE may be used to identify

proteins that differentiate or characterize certain patient groups or

sample sets. For instance, by comparing specimens from patients

with a specified disease to a control group, statistical differences in

the levels of proteins can be determined to identify proteins

associated with a disease state that may serve as diagnostic or

prognostic biomarkers [3].

Several statistical tests have been applied to detect differences in

protein expression. These include the use of classical Student’s t-

test, Analyses of Variance [2], principle component analysis and

partial least squares analysis [4,5]. A key disadvantage with these

methods is their failure to adequately address the difficulties of

dealing with non-expressed or undetected proteins in some or all

subjects within a group [6,7].

There are three broad reasons to explain why a given protein

may not be detected in 2D PAGE experiments: (1) the lack of

sensitivity of the experimental setup or software to detect the

presence of an expressed protein, usually a consequence of some

threshold of detectable concentration [8]; (2) the true absence or

non-expression of a protein; and (3) software-induced error, when

proteins are incorrectly designated as being absent [9]. Some

researchers have developed methods that impute missing values

from the existing data [6]. However, without knowing the true

causes of these missing values, imputation may introduce

additional errors to the dataset [5,7]; in particular, by ignoring

the possibility that a protein may not be expressed in a certain

group of subjects, imputation may lead to an elevation in the

numbers of false negatives.

The problem of missing values may be addressed through the

incorporation of missing observations into a statistical model of the

data. Under the principle of likelihood, estimates of parameters

(such as the mean expression intensity or the probability of

expression) may then be obtained by computing the probability of

obtaining the observed data, given different values of these

parameters. The best estimates are those that maximize this

probability, which is also called the maximum likelihood. Wood

and co-workers [10] first proposed a statistical method to compute

the likelihood for expressed proteins which simultaneously takes

missing data into account along with expression profiles. Their

method does not distinguish the processes that may account for

why a protein is undetected. This means that the probability

associated with non-detection is a composite of the probabilities of

protein non-expression or expression below the level of detection.

In our paper, a new likelihood model is proposed that extends the

approach of Wood et al. and is specifically applicable to situations
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where subjects belong to either a Case group or a Control group, in

keeping with a case-control experimental design. This extended

model allows for non-detected proteins and classifies them into two

categories: either (a) the protein truly is not expressed, or (b) the

protein is expressed but the expression level is below the limit of

detection. We show how our proposed new method performs under

simulations and compare results with standard statistical approaches

commonly applied to detect differences in protein expression

between groups. We also present an example using a subset of spots

from a Case-Control 2D PAGE experiment.

Materials and Methods

Development of a likelihood model. Our new likelihood

was calculated using two statistical distributions to describe the

data (i.e., a generalized mixture model). In our development of the

likelihood model, we assumed the following:

1. For each subject in the case or control groups, a single 2D

PAGE gel was run. The model can be extended to include

multiple PAGE gels per person, but that extension is not

described here.

2. For all 2D gels, image processing software matched the spots

and, for each gel, calculated relative volumes for each spot by

dividing the uncorrected volume of each spot by the sum of all

spot volumes on that particular gel. The relative volumes for

each gel were log2 transformed before further analysis.

Calculation of relative spot volumes is roughly equivalent to

mean subtraction on the log scale, and thus provides a simple

approach to standardizing the distribution of spot volumes

across gels, in a similar manner to the use of a fixed effects

ANOVA model for the removal of linear array effects in

microarray analysis [11]. In the data used here, the

distributions of spot volumes across gels were very similar,

resulting in only a minor correction. In cases where more

serious inter-gel differences exist (e.g., differences in spread, or

severe skewness after log transformation), more sophisticated

approaches to standardization may be required.

For any individual for whom a 2D gel had been run, the

probability that a given protein has a recorded volume depends on

(1) the probability that the protein is expressed conditional on the

group to which that subject belongs (modeled using the binomial

distribution), and (2) the probability that the concentration of the

protein is above the threshold limit of detection (modeled using a

truncated and normalized normal distribution). The likelihood

model is a mixture of these two probabilities.

The likelihood of obtaining the protein concentrations across

all patients for each matched spot is the probability of obtaining

these concentrations, given the parameters that determine the

binomial and normal distributions (unique to each group), and the

threshold level of detection. Each ‘‘spot’’ or set of matched protein

intensities are treated as independent random variables, and

analyzed separately. Let the parameters be collectively re-

presented by H~ mCase,s2
Case,mControl ,s

2
Control ,pCase,pControl ,d

� �
where mCase,s2

Case

� �
and mControl ,s

2
Control

� �
are the means

and variances of the normal distributions of expressed protein

concentrations for the Case and Control groups, respectively.

Parameters pCase, pControlf g are the binomial probabilities that

the protein is expressed in the case and control groups respectively,

and d is the limit of detection.

Formally, we write the likelihood as

L(H)~f CCase,1, . . . ,CCase,n,CControl,1, . . . ,CControl,mjHð Þ ð1Þ

Where f is the likelihood function and CCase,1, . . . ,CCase,nf g is

the vector of concentrations in n subjects in the case group, and

CControl,1, . . . ,CControl,mf g represent the m concentrations in the

control group. For simplicity, in the following formulas, we will

index the case and control groups as ‘‘1’’ and ‘‘2’’, respectively.

We assume that the concentrations of proteins associated with

each patient (conditional on their respective group parameters) are

independent random variables. A proteomic gel scanner will scan

image intensities at each coordinate of the gel. If the intensity is

below the limit of detection, d, the scanner will typically leave the

intensity value for that coordinate blank. The coordinates are then

matched across the gels of different individuals. For our analyses,

we include all coordinates where there is at least one (non-blank)

value obtained for at least one individual (or gel). Consequently, in

our model, we do not ignore all blank values, because across

different individuals, some will have intensities above the limit of

detection. When no concentration is recorded, Cx,y is set to ‘‘NA’’

in our computer program, signaling that Cx,y,d.

Consequently, we can rewrite Equation (1) as:

L Hð Þ~P
n

i~1
f C1,ijm1,s2

1,p1,d
� � Pm

j~1
f C2,ijm2,s2

2,p2,d
� �

ð2aÞ

or as a log-likelihoods:

ln L Hð Þ~
Xn

i~1

ln f C1,ijm1,s2
1,p1,d

� �
z
Xm

j~1

ln f C2,j jm2,s2
2,p2,d

� �
ð2bÞ

Equations (2a and 2b) define the likelihood L(H), which

represents the probability of obtaining the observed values of

relative intensities, given hypothesized parameters H. For the kth

subject of group x, we can partition the probability of obtaining the

observed concentration, Cx,k, conditional on mx, sx
2, px and d as:

f Cx,kjmx,s2
x,px,d

� �
~

1{pxð Þzpx

Ð d

{?
1

sx

ffiffiffiffi
2p
p exp {

y{mxð Þ2
2s2

x

� �
dy ifCx,kvd

px

l
1

sx

ffiffiffiffi
2p
p exp {

Cx,k{mxð Þ2
2s2

x

� �h i
otherwise

8><
>:

ð3Þ

Author Summary

Many researchers use two dimensional polyacrylamide gel
electrophoresis (2D PAGE) to identify proteins with
different concentrations under different conditions. Sever-
al statistical methods have been used to identify these
proteins, ranging from standard statistical tests to complex
image analysis. Most of these methods fail to address the
limitation of this technology, which is that when the
concentration of a protein is too low, 2D PAGE is unable to
detect this particular protein. Standard methodologies
implemented in most software packages ignore these
proteins completely. We propose an alternative approach
based on the likelihood framework, which takes into
account when the concentration of protein is above the
detection level and below the threshold. Our results show
that this model allows us to identify more proteins with
different concentration levels under different conditions
than the standard statistical approaches.

Detection of Differentially Expressed Proteins
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and l is the scaling factor to ensure the truncated normal

distribution integrates to one:

l~

ðv

d

1

sx

ffiffiffiffiffiffi
2p
p exp {

y{mxð Þ2

2s2
x

 !
dy

where d is the limit of detection and n is the maximum expression

value.

In Equation (3), The first term on the right hand side is the

likelihood when the protein is not detected, and consists of two

parts: the probability that the protein is not expressed, or the

probability that the protein is expressed, but is below the limit of

detection, d. The second term on the right-hand side is simply the

ordinate of the truncated normal probability density function, and

gives the likelihood when the protein has a detectable concentra-

tion. The truncated distribution is bounded between the limit of

detection d and the maximum expression value v. The limit of

detection d is assumed to be constant and known. The maximum

expression value v is, of course, log2(100). Dividing by the scaling

factor l ensures that the truncated normal distribution integrates

to one. The mean of the normal distribution mx and the binomial

probabilities px are free parameters which can be estimated from

the data in order to maximize the log-likelihood. The maximized

log-likelihood allows us to identify differentially expressed proteins.

We can test the null hypothesis that there is no difference between

the mean expression intensities or the probabilities of expression

between Case and Control using a Likelihood Ratio Test.

Application of the likelihood ratio test (LRT). A protein is

considered differentially expressed when a statistically significant

difference between the mean expression intensities or the

probability of expression of the two groups is detected. We use

the LRT to compare two models to determine the difference

between Cases and Controls.

We assume the variance of expression intensities is equal for

both groups. The variance for each group is estimated separately

then pooled according to the following formula.

s2
g~

(n{1)s2
Casez(m{1)s2

Control

(mzn{1)
ð4Þ

If the sample size for one group is too small (1 or less) and we are

unable to estimated the variance for that group, then the empirical

global variance is used for this particular group.

For the first simpler model, we assume the values for the

parameters (mean expression intensities and the probability of

expression) are common to both groups. Therefore there are

only two free parameters in this simplified model and the log-

likelihood is

ln L m,s2,p,d
� �

~
Xn

i~1

ln f C1,ijm,s2,p,d
� �Xm

j~1

ln f C2,j jm,s2,p,d
� �

ð5Þ

We also fit the more complicated model where these same

parameters are allowed to have different values dependent upon

the group (Equation 2b). The parameters that are allowed to vary

between groups are referred to as free parameters. We let lnL1

denote the maximum natural log of the likelihood from a model

with more free parameters and lnL0 be the maximum natural log-

likelihood from the simpler model. The likelihood ratio statistic, D,

is calculated as

D~{2 ln L0{ln L1ð Þ ð6Þ

The null and alternative hypotheses for this test are

H0 : m0~m0 and r0~r1

H0 : m0=m0 or r0=r1

The maximum natural log-likelihoods from the two different

models are calculated. The full model had four parameters which

corresponded to mean expression intensities and probabilities of

expression for both groups (Equation 2b). The null model only has

one mean expression intensity and probability of expression,

because it is assumed that these parameters are equal for both

Cases and Controls.

When the sample size is large, the likelihood ratio statistic under

the null hypothesis approaches a x2 distribution with n degrees of

freedom, where n is the difference in the number of free

parameters between the null and alternative models. In the

comparison between a single set of parameters for both Case and

Control vs. separate parameters for Case and for Control, the

difference in the number of free parameters (and, consequently,

the degrees of freedom) is 2.

However, if the total number of individuals in the Case and

Control groups is small (as in our 2D PAGE data), we may use a

permutation procedure to generate the null distribution for the

likelihood ratio statistic. For each protein, the normalized spot

volumes are assigned randomly without replacement to patients,

independent of case or controls status. This removes any effect due

to the group membership of the individuals. This is done a large

number of times (in our analyses, 1000 times), and for each

permutation of the data, a likelihood ratio statistic is calculated.

Combining the likelihood ratio statistics from these permutations

generates a frequency distribution of the statistic under the null

distribution, for which we are then able to determine the 95%

quantile. A protein is considered statistically differentially

expressed if the observed likelihood ratio statistic is greater than

this quantile determined from the distribution.

In our analyses, the log-likelihood of each protein is estimated

independently.

Simulation analysis. We determined the behavior of the

likelihood-based approach using stimulated data and compared

this with standard statistical methods such as Student’s t-test. The

simulated data were created based on real biological experimental

results presented elsewhere. In this study [12], plasma samples

were obtained from 24 women at 20 weeks of pregnancy; 12 of

these women later developed preeclampsia and 12 remained

healthy during pregnancy. Plasma was depleted of six high

abundant proteins using the Multiple Affinity Removal System

(Agilent Technologies). Images were created containing the

protein spots on each gel, and spots were detected and matched

using ImageMaster 2D Platinum software v6.01 (GE Healthcare).

There were 803 spots matched across the gels. Data were then

simulated in accordance with the experimental design using the

summary statistics, mean expression intensities and global

variances from this experiment.

We performed four simulations to generate four datasets, each

corresponding to a different set of values for mean expression

intensities and probabilities of expression. Based on the original

data, simulated data were created by generating normalized

percentage volumes for each protein in the ‘‘gel’’ for each of the

12 ‘‘subjects’’ in the case group and control group. For each gel, we

Detection of Differentially Expressed Proteins
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simulated 1000 spots, drawing log-intensities from normal distribu-

tions centered on the mean log-intensities of case and control

groups. The variance for the normal distribution was fixed at

empirical global variance for all simulated dataset. The empirical

global variance was calculated in two steps. Firstly, we pooled all the

variances within each group to obtain the group variances for cases

and controls, and then the global empirical variance was estimated

by pooling these two variances (Equation 4).

The simulated datasets were generated according to the

following four criteria:

Simulation 1. Different mean expression intensities with

all spots expressed. The probabilities of expression were fixed

at ‘1’ for both groups (i.e. all proteins expressed), but the groups

had different mean expression intensities. The difference between

the mean expression intensity in case and controls ranged from 0

to 2.5 standard deviations (SD) calculated from the global

empirical variance. The limit of detection is ignored in this

simulation because all values are expressed.

Simulation 2. Different probabilities of expression but

the same mean expression intensities. In this simulation,

proteins in the two groups had different probabilities of expression

from 0.1–1, resulting in the number of expressed proteins on each gel

being different in Cases and Controls. The mean expression intensities

were identical for both groups (set to the empirical mean of 23.58

log2-volume units) and the limit of detection is set to negative infinity.

For the Student’s t-test, we applied one of two additional data pre-

processing steps to handle missing values. Missing data were either

ignored or replaced by a value equal to the lowest expression intensity

obtained across all spots in all Cases and Controls.

Simulation 3. Different limit of detection and a fixed

difference between the mean expression intensities. The

limits of detection varied from 0% to 50% of the normal

distribution of expression intensities, corresponding to the group

with lower mean intensities. The probabilities of expression were

fixed at ‘1’ for both groups, but if the simulated normalized

percentage volume was below the limit of detection, then that

protein was recorded as ‘‘non-expressed’’. The mean log-

intensities for the case and controls were fixed at 23.987 units

and 23.174 units, respectively, equivalent to a difference of 1.25

SD units.

Simulation 4. Different mean expression intensities and

same probability of expression between two groups. This

is an extension of Simulation 1 and investigates the effect when

not all spots are expressed. Both groups had the same

probabilities of expression, but these now ranged from 0.1–1.

The difference between the mean expression intensity in case

and controls ranged from 0 to 2 SD. The limit of detection is set

to empirical value (28.67 log2-volume units), any simulated

value below this threshold will be treated as missing data.

Missing data were pre-processed for the Student’s t-test as

described for Simulation 2.

Table 1. Results for different mean expression intensities
between groups with all spots expressed.

Difference between
means (SD)*

Case
Mean

Control
Mean

Student’s
t-test LRT

0 23.58 23.58 3.8% 3.9%

0.25 23.66 23.50 10.4% 10.5%

0.5 23.74 23.42 20.1% 20.6%

0.75 23.82 23.34 40.5% 41.0%

1 23.91 23.26 64.4% 64.7%

1.25 23.99 23.17 82.9% 83.0%

1.5 24.07 23.09 93.7% 93.7%

1.75 24.15 23.01 98.2% 98.2%

2 24.23 22.93 99.7% 99.7%

2.25 24.31 22.85 100% 100%

2.5 24.39 22.77 100% 100%

Proportion of proteins classified as differentially expressed by each model.
*Difference in mean expression intensities between cases and controls,
expressed as proportions of the standard deviation, s.

doi:10.1371/journal.pcbi.1000509.t001

Table 2. Results for equal mean expression intensities but
the probability of expression differs between groups.

A: Student’s t-test, missing values excluded

Case: Probability of Expression

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Control: Proability of Expression

0.1 0.4%

0.2 1.3% 2.4%

0.3 1.5% 2.9% 5.5%

0.4 2.5% 2.6% 4.4% 4.9%

0.5 1.6% 3.2% 3.7% 5.5% 5.5%

0.6 2.1% 2.8% 5.7% 4.7% 4.2% 4.1%

0.7 1.8% 4.1% 4.3% 6.2% 4.6% 5.0% 5.2%

0.8 2.4% 3.8% 5.9% 4.4% 4.2% 4.7% 5.3% 4.5%

0.9 1.1% 3.5% 3.8% 4.7% 3.7% 4.4% 5.7% 3.0% 4.8%

1 1.5% 4.0% 5.2% 5.4% 4.9% 5.2% 6.4% 5.2% 3.8% 5.7%

B. Student’s t-test, missing values replaced with global minimum

Control: Proability of Expression

0.1 1.6%

0.2 6.8% 4.5%

0.3 20.4% 7.6% 5.4%

0.4 39.0% 16.8% 7.9% 5.3%

0.5 58.1% 31.4% 16.9% 7.1% 4.1%

0.6 78.1% 53.6% 33.8% 17.3% 7.5% 5.1%

0.7 89.3% 71.2% 49.7% 32.1% 14.0% 5.7% 4.3%

0.8 96.6% 86.6% 74.0% 51.4% 29.8% 16.7% 7.4% 4.7%

0.9 99.8% 97.4% 88.4% 73.2% 55.3% 38.1% 22.2% 6.4% 3.2%

1 100.0% 99.9% 99.4% 95.4% 89.2% 70.4% 42.7% 20.8% 6.1% 6.2%

C. Likelihood Ratio Test

Control: Proability of Expression

0.1 4.7%

0.2 4.1% 4.5%

0.3 3.9% 4.9% 6.4%

0.4 5.3% 4.3% 4.6% 5.3%

0.5 17.7% 6.6% 5.5% 5.2% 4.7%

0.6 25.3% 11.6% 7.2% 6.1% 4.4% 4.3%

0.7 37.7% 20.6% 9.7% 6.9% 4.9% 4.9% 5.4%

0.8 61.7% 30.6% 18.2% 10.2% 6.1% 6.7% 6.4% 4.2%

0.9 77.2% 47.4% 27.4% 15.3% 9.5% 6.9% 6.5% 2.8% 5.1%

1 97.8% 85.9% 52.4% 28.3% 14.3% 9.7% 8.3% 6.9% 4.7% 6.4%

Proportion of proteins classified as differentially expressed by each model.
doi:10.1371/journal.pcbi.1000509.t002
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Application of model to simulated datasets. Differentially

expressed proteins in each simulated dataset were identified using

the LRT and Student’s t-test using the software package R [13].

Likelihood optimization was performed using the Nelder and

Mead algorithm [14]. To estimate the likelihood, we assume that

the variance of expression intensities is equal for both groups. The

variance for each group is estimated separately then pooled

according to Equation (4). If the sample size for one group is too

small (1 or less) and we are unable to estimated the variance for

that group, then the empirical global variance are used for this

particular group. For the Student’s t-test, we assumed variances

were unequal and corrected for degrees of freedom [15]. Proteins

were classified as having significantly different levels of expression

if p-values were less than 0.05. The power of each algorithm was

determined by the proportion of simulations out of 1000 that were

able to detect a given level of difference.

Application of model to 2D PAGE example. The 2D

PAGE experiment described earlier consists of 803 matched spots

per gel or sample. There were 12 samples from women who

developed preeclampsia (Case group) and 12 from women who

remained healthy during pregnancy (Control group). For each

spot, the maximum likelihood was estimated under the two models

and then the LRT was used to determine differentially expressed

spots. The significance level of the hypothesis test was obtained by

permuting the log-intensities across all patients 1000 times,

reanalyzing the data under the null and alternative models,

estimating the likelihood ratio for each permutation, and obtaining

the value of the likelihood ratio that defined the 95% quantile of

the distribution of likelihood ratios.

Results

Our models were applied to the four simulated datasets.

Simulation 1. Different mean expression intensities with

all spots expressed. The proportion of proteins classified as

differentially expressed between the two groups by the Student’s t-

test or LRT is summarized in Table 1. As expected, when all

proteins are expressed, both methods demonstrated equivalent

levels of power over the range of differences in mean expression

intensities between groups tested.

Simulation 2. Different probabilities of expression but

the same mean expression intensities. The results of this

simulation are presented in Table 2. When the probability of

expression for case equals 0.2 and the probability of expression for

control equals 1.0, the Student’s t-test identified 4.0% of the

differentially expressed spot if missing values are excluded, and

99.9% if all missing values are replaced by the global minimum.

The LRT identified 85.9% from the same dataset.

When Student’s t-tests were applied to datasets in which missing

values were ignored, the majority of proteins were not classified as

differentially expressed. This is the expected outcome, because the

mean expression intensities of expressed proteins were identical in

both groups and therefore the probability of successfully detecting

differences is no greater than the value of a= 0.05. Consequently,

a Student’s t-test where missing values are ignored lacks the power

to identify proteins with different expression probabilities between

groups.

When missing values were assigned the global minimum log-

intensity, the number of differentially expressed proteins detected

by Student’s t-test increased when the difference between

probabilities of expression in the two groups increased. Substitu-

tion of missing values with the global minimum increased the

power of the Student’s t-test when the probability of expression

was low for both groups because the estimated sample variance

becomes very small. This is an artifact induced by replacing the

many missing values by a constant, the global minimum.

When there are no differences between the probabilities of

expression (diagonal in Table 2), the LRT returned the expected

rate of 0.05 corresponding to the level of significance, but had

lower power to detect differences between the groups. This is

because the LRT does not substitute missing values; instead, the

variance is estimated only on expressed values.

Simulation 3. Different limit of detection and a fixed

difference between the two mean expression intensities.

The difference between mean log-intensities for the Case and

Control Groups were fixed at 1.25 SD units because in Simulation

1 this difference in mean intensities delivered .80% power

(Table 1). When Student’s t-tests were calculated ignoring non-

expressed proteins, the statistical power dropped from 86% to

15% as the limit of detection increased, whereas the statistical

power for the LRT dropped to 43.6% (Table 3). Again,

replacement of missing values with some constant (in this case,

the limit of detection) maintained the level of power of the

Student’s t-test at around 80%.

Table 3. Results for fixed difference in mean expression intensities and varying limits of detection.

Quantile on the normal
distribution

Limits of
detection

Student’s t-test
exclude missing data

Student’s t-test global
minimum for missing data

Likelihood
Ratio Test

0% -Infinity 86.3% 84.2% 84.4%

5% 25.06 82.3% 83.9% 81.1%

10% 24.82 74.1% 82.3% 74.6%

15% 24.66 68.5% 82.2% 71.3%

20% 24.53 61.6% 83.6% 69.7%

25% 24.43 52.5% 82.4% 64.7%

30% 24.33 45.6% 80.1% 59.2%

35% 24.24 35.5% 82.1% 57.2%

40% 24.15 31.3% 80.8% 56.2%

45% 24.07 21.6% 78.7% 46.3%

50% 23.99 15.4% 79.9% 43.6%

Proportion of proteins classified as differentially expressed by each model.
doi:10.1371/journal.pcbi.1000509.t003
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Simulation 4. Different mean expression and same

probability of expression between two groups. Both

groups had the same probabilities of expression, but these

were no longer fixed at ‘1’. In contrast to the other simulations,

replacement of missing values by the global minimum reduced

the power of the Student’s t-test to detect differences in

expression intensities (Table 4). In contrast, the LRT and

Student’s t-test in which missing values were ignored performed

equally well.

Application of model to 2D PAGE data. The LRT

identified 33 differentially expressed spots out of 803 match

spots, of which five spots were selected exemplars (Figure 1).

Each protein selected demonstrated different distributions in

Cases and Controls. Spot 93 shows complete separation of

Cases and Controls. In spot 289, the mean expression

intensities and the number of expressed spots are different

between groups, and spot 390 is only expressed in the Controls.

Spot 435 has similar number of expressed spots but different

mean expression intensities between two groups, whereas spot

686 has similar mean expression intensities but only five spots

are expressed in the Case group and all 12 spots are expressed

in controls. Table 5 shows the maximum likelihood derived

from the two models, with the associated likelihood ratio

statistic. As the likelihood ratio statistic was greater than the

95th percentage percentile generated by 1000 permutations, we

considered each of these protein spots to be differentially

expressed. In contrast, when we applied a Student’s t-test in

which missing values are ignored, none of these proteins were

statistically significant. The Student’s t-test in which missing

values are replaced by a global minimum was marginally better,

identifying spots 289, 390 and 435 as significantly differentially

expressed.

Table 4. Result for different mean expression intensities and same probability of expression between two groups.

Probability of Expression M:0 M:0.25 M:0.5 M:0.75 M:1 M:1.25 M:1.5 M:1.75 M:2

A. Student’s t-test, missing values excluded

0.1 0.4% 0.9% 1.0% 1.4% 2.5% 4.1% 4.1% 5.4% 6.7%

0.2 2.5% 4.0% 5.7% 7.5% 12.5% 15.5% 24.2% 29.5% 35.0%

0.3 4.5% 4.4% 8.1% 15.4% 24.4% 30.0% 40.9% 52.9% 61.1%

0.4 4.1% 6.0% 10.1% 20.6% 31.0% 44.3% 57.0% 69.3% 80.0%

0.5 4.6% 5.9% 11.2% 23.4% 40.5% 53.1% 72.5% 82.0% 88.9%

0.6 5.7% 8.1% 13.8% 29.6% 46.8% 63.4% 79.4% 90.2% 94.5%

0.7 5.5% 8.7% 17.5% 33.4% 55.3% 73.5% 83.1% 94.5% 97.6%

0.8 5.5% 8.8% 20.9% 37.2% 60.1% 76.2% 91.8% 96.0% 99.1%

0.9 5.5% 9.4% 23.0% 41.0% 64.6% 83.0% 94.5% 98.1% 99.5%

1 5.9% 9.1% 20.8% 42.6% 70.5% 84.2% 95.9% 99.0% 99.9%

B. Student’s t-test, missing values replaced with global minimum

0.1 1.3% 1.7% 1.4% 1.6% 1.7% 1.6% 1.2% 2.0% 1.9%

0.2 4.6% 3.3% 4.9% 2.1% 4.0% 4.0% 3.4% 4.4% 4.6%

0.3 5.9% 4.5% 4.7% 3.5% 5.7% 6.1% 6.4% 5.6% 4.6%

0.4 5.2% 5.7% 4.7% 4.2% 5.0% 5.7% 5.8% 6.4% 7.8%

0.5 5.0% 4.9% 4.4% 6.6% 8.0% 7.4% 7.8% 8.7% 9.6%

0.6 5.5% 6.4% 5.3% 6.7% 6.2% 7.3% 7.8% 8.7% 9.3%

0.7 6.5% 5.4% 6.1% 7.1% 7.1% 10.0% 9.6% 11.2% 17.8%

0.8 4.8% 5.7% 6.3% 8.6% 11.7% 13.2% 17.3% 19.1% 24.7%

0.9 2.7% 4.7% 8.1% 12.3% 20.4% 25.4% 30.4% 35.8% 38.9%

1 5.4% 8.1% 19.1% 38.8% 65.4% 82.0% 94.5% 98.5% 99.8%

C. Likelihood Ratio Test

0.1 5.2% 5.0% 5.9% 7.5% 7.2% 9.5% 10.4% 11.7% 15.0%

0.2 4.0% 5.7% 5.6% 9.0% 11.9% 14.2% 15.9% 23.9% 29.3%

0.3 5.2% 5.5% 8.9% 12.2% 18.9% 24.8% 32.6% 41.9% 47.6%

0.4 4.4% 6.0% 8.2% 16.3% 25.3% 35.7% 46.9% 56.8% 69.3%

0.5 4.1% 5.9% 12.1% 20.2% 34.1% 44.9% 61.8% 71.8% 81.1%

0.6 5.1% 7.8% 12.4% 25.7% 38.2% 55.2% 71.0% 83.0% 89.6%

0.7 4.9% 8.0% 15.8% 30.2% 47.1% 66.9% 76.7% 89.2% 94.0%

0.8 5.0% 9.4% 19.8% 33.2% 56.7% 71.1% 88.1% 92.0% 97.8%

0.9 5.8% 7.9% 22.4% 36.8% 60.4% 79.2% 90.7% 95.9% 98.8%

1 5.5% 8.4% 19.3% 39.3% 65.5% 82.3% 94.6% 98.6% 99.8%

Proportion of proteins classified as differentially expressed by each model.
doi:10.1371/journal.pcbi.1000509.t004
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Discussion

In this paper, we developed a likelihood-based approach by

using two statistical distributions to describe the data (i.e., a mix-

ture model) to identifying proteins that are differentially ex-

pressed between two groups. True differential expression, under

our definition, implies either a difference in the probabilities of

expression between the two groups, or a difference in the mean

expression levels, or both. Several standard statistical approaches

only consider the difference in mean expression intensities. For

any 2D PAGE experiments we should attempt to find the

maximum number of truly differentially expressed spots and

minimize both false positives and false negatives. The likelihood

model classifies proteins that are undetected in some gels either as

potentially expressed proteins that fall below the level of

detection, or proteins that are not expressed. In so doing, the

model tries to build a well-defined and biologically plausible

picture of comparative protein expression. In contrast, standard

statistical analyses (e.g. Student’s t-tests) are forced to ignore

‘‘missing’’ proteins, or require some ad hoc pre-processing of

data such as the replacement of missing values by a global

constant or some other more sophisticated imputation process

[6]. However, attempting to impute missing values when a

protein is truly not expressed effectively increases the error.

Inappropriate analytical methods can lead to loss of important

information and potentially incorrect conclusions. For example,

if a protein is expressed only in Cases, or only in Controls,

application of standard statistical approaches may result in

failure to recognize that the protein is a potential biomarker for

that disease.

Figure 1. Five differentially expressed spots. (A) Five differentially expressed spots identified by the LRT on 2D PAGE. (B). Scatter plot of the five
spots. PE = preeclampsia cases. C = Healthy controls.
doi:10.1371/journal.pcbi.1000509.g001
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Our simulations highlight the contrast between the likelihood-

based approach and the use of Student’s t-tests. The performance

of these approaches is summarized in Table 6. This table

illustrates that LRT performs well under all four analyses, while

the performance of Student’s t-test varies between each analysis.

In particular, when there are proteins that have not been

identified in some gels, and are classed as ‘‘missing’’, there are

two kinds of t-test one may apply: one can choose to exclude

‘‘missing’’ values or one can replace these values with a global

minimum. In two of our four sets of simulations, the Student’s t-

test in which missing values were replaced by a global constant

had higher power than the LRT. This is because the estimated

variance is artificially deflated as a consequence of replacing

many expression intensities with the same constant. In contrast,

the LRT performs better than the Student’s t-test in Simulation

4, when the probabilities of protein expression are the same for

the two groups, but the group-mean expression intensities differ.

We expect that this situation, or one close to it, is more likely to

mirror real experimental outcomes. Indeed, our application of

the LRT on a small selection of proteins from a real biological

experiment suggests that this is the case. We think that the

likelihood model more realistically identifies the causes associat-

ed with ‘‘missing’’ data, and in so doing, provides a framework

that is interpretable and intuitive.

Mixture models are not new in the statistical literature and have

been used in several other fields [16]. Similar models had been

developed in other proteomic studies to handle missing values

[17]; however, they have not been routinely applied to 2D PAGE

experiments. The likelihood-based approach developed here can

be applied to 2D PAGE experiments regardless of the physical or

chemical system employed to generate the gel image and data. It

also can be easily extended to allow multiple gels per patient and

other, more complex, designs. What is required in these settings is

to formulate appropriate distributional descriptions of the

variances between gels within patients, and between patients

within groups. In this regard, the process is no different from the

parameterization under standard generalized linear mixture

models. We are also developing extensions of this model for other

proteomic data systems, including difference gel electrophoresis

(DIGE) [18].

When we apply the same statistical test repeatedly, it is

essential that multiple comparisons correction is applied after

the analysis. Otherwise we are likely to discover large number of

false positive differentially expressed proteins. In our analyses,

we did not apply any correction for multiple tests, because our

aim was to obtain estimates of the power and the false positive

rates under different conditions. In practice, different multiple

comparison procedures, such as the one proposed by Newton et.

al. [19] can be implemented depending on the downstream

analysis.
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Table 5. Five differentially expressed spots identified by the Likelihood Ratio Test.

Estimated
Mean

Estimated
Probability of
expression

log maximum
likelihood Null
model

log maximum
likelihood
Alternative model

Likelihood Ratio
Statistics

95th%
quantile

Spot 93 Case 23.29 0.33 226.81 210.46 16.41 11.58

Control 22.47 0.33 28.15

Spot 289. Case 21.55 0.33 234.79 213.21 15.11 12.49

Control 20.54 0.67 214.02

Spot 390 Case 22.44 0.75 221.47 212.34 18.26 13.66

Control 22.48 0.00 20.001

Spot 435 Case 21.09 1.00 263.87 25.90 41.37 27.86

Control 21.49 1.00 237.28

Spot 686 Case 24.90 1.00 226.64 20.69 21.34 17.20

Control 24.48 0.42 215.28

doi:10.1371/journal.pcbi.1000509.t005

Table 6. Compares the performance between four simulation analyses.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Student’s t-test, missing values excluded Good Low power Low power Good

Student’s t-test, missing values replaced with global minimum Not applicable Good Good Low power

Likelihood Ratio Test Good Reasonable Reasonable Good

doi:10.1371/journal.pcbi.1000509.t006
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9. Wheelock ÅM, Buckpitt AR (2005) Software-induced variance in two-

dimensional gel electrophoresis image analysis. Electrophoresis 26: 4508–4520.

10. Wood J, White IR, Cutler P (2004) A likelihood-based approach to defining

statistical significance in proteomic analysis where missing data cannot be

disregarded. Signal Processing 84: 1777–1788.

11. Kerr MK, Martin M, Churchill GA (2000) Analysis of Variance for Gene

Expression Microarray Data. J Comput Biol 7: 819–837.

12. Atkinson KR (2008) Proteomic biomarker discovery for preeclampsia [PhD

thesis]. Auckland: University of Auckland.

13. R Development Core Team (2008) R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

14. Nelder JA, Mead R (1965) A simplex method for function minimization.

Comput J. pp 308–313.

15. Rowell C, Carpenter M, Lamartiniere CA (2005) Modeling Biological

Variability in 2-D Gel Proteomic Carcinogenesis Experiments. J Proteome

Res 4: 1619–1627.

16. Rose CE, Martin SW, Wannemuehler KA, Plikaytis BD (2006) On the Use of

Zero-Inflated and Hurdle Models for Modeling Vaccine Adverse Event Count

Data. J Biopharm Stat 16: 463–481.

17. Wang P, Tang H, Zhang H, Whiteaker J, Paulovich AG, et al. (2006)

Normalization Regarding Non-Random Missing Values in High-Throughput

Mass Spectrometry Data. Pac Symp Biocomput. pp 315–326.

18. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for

differential-display 2D-gel proteomics. Expert Rev Proteomics 1: 401–409.

19. Newton MA, Noueiry A, Sarkar D, Ahlquist P (2004) Detecting differential gene

expression with a semiparametric hierarchical mixture method. Biostatistics 5:

155–176.

Detection of Differentially Expressed Proteins

PLoS Computational Biology | www.ploscompbiol.org 9 September 2009 | Volume 5 | Issue 9 | e1000509


